WASTEWATER TREATMENT PLANT
AS-MONOcomp 2-50
DESIGN & INSTALLATION DOCUMENTS
WASTEWATER TREATMENT PLANT

AS-MONOcomp 2-50

DESIGN & INSTALLATION DOCUMENTS

ASIO NEW, spol. s r.o.
Křírova 552/45
619 00 Brno
Czech Republic

Phone: +420 548 428 111
http://www.asio.cz
e-mail:asio@asio.cz
Valid from: 20 January 2020
Contents

1 Introduction .. 7
2 Product description .. 8
 2.1 General .. 8
 2.2 WWTP sizes and options ... 8
 2.3 Type marking diagrams .. 8
3 How the WWTP works .. 9
 3.1 General .. 9
 3.2 Plant description .. 9
 3.2.1 Plant layout .. 9
 3.2.2 Construction ... 9
 3.3 Description of plant functions .. 10
 3.3.1 Purification process .. 10
 3.3.2 Other processes .. 10
 3.3.3 Phosphorus precipitation option ... 10
 3.3.4 Sanitisation option ... 11
4 WWTP tank options .. 11
 4.1 Tank basic option ... 11
 4.1.1 General .. 11
 4.1.2 Tank covering – basic option ... 11
 4.1.3 Tank placement in the ground .. 11
 4.2 PB, PB-SV tank design ... 12
 4.2.1 General .. 12
 4.2.2 Closing the tank with the cover .. 13
 4.2.3 Setting the tank into the ground ... 13
5 Process equipment and electrical installations .. 15
 5.1 Process equipment .. 15
 5.1.1 General .. 15
 5.1.2 Blower .. 15
 5.1.3 Airlift pump(s) ... 15
 5.1.4 Aerators ... 15
 5.1.5 Precipitant dosing device ... 15
 5.1.6 UV lamp .. 15
 5.2 Electrical installations .. 16
 5.2.1 General .. 16
5.2.2 Power supply to the plant ... 16
6 Wastewater brought to the plant ... 16
7 General design instructions .. 19
 7.1 General .. 19
 7.2 Selecting the WWTP type .. 19
 7.2.1 General ... 19
 7.2.2 Determination of the PE number and nominal loading 19
 7.2.3 Selection in terms of the discharge parameters 20
 7.2.4 Tank design ... 21
 7.3 Layout of the plant ... 21
 7.4 Connecting inlet and discharge pipes ... 21
 7.5 Ventilation of the plant .. 21
 7.6 Electrical design documentation .. 22
8 General installation instructions ... 22
 8.1 Professional qualifications ... 22
 8.2 Installation supporting documents .. 22
 8.3 Scope of the plant supply ... 23
 8.4 Installation steps in general ... 23
9 Foundation slab construction ... 24
 9.1 General .. 24
 9.2 Foundation pit excavation ... 24
 9.3 Preparation of the foundation slab .. 24
10 Setting of the WWTP tank .. 25
 10.1 General .. 25
 10.2 Tank – basic option .. 25
 10.2.1 General ... 25
 10.2.2 Setting with backfilling .. 25
 10.2.3 Setting with additional concrete pouring 25
 10.3 Tank design /PB .. 26
 10.3.1 General ... 26
 10.3.2 Standard concrete pouring into the internal jacket space 26
 10.3.3 Setting with additional concrete pouring 26
11 Setting and connecting of other sections of the plant 27
 11.1 General .. 27
 11.2 Installation of the control unit and the blower 27
11.2.1 Placement in the building ... 27
11.2.2 Optional accessories – the pillar .. 27

11.3 Installation of the dosing pump ... 27
11.3.1 Placement in the building ... 27
11.3.2 Optional accessories – the pillar .. 27

11.4.1 Control unit installation ... 27
11.4.2 Connecting the dosing pump ... 28

12 Commissioning of the plant ... 28
12.1 Putting into service by the technician .. 28
12.2 Technical documentation ... 28
12.3 Commissioning conditions ... 28

13 Handling, transport and storage .. 29
13.1 Handling .. 29
13.2 Transport ... 29
14.3 Storage ... 29

15 Attendance and maintenance ... 30
14.1 General ... 30
14.2 Operators’ qualifications .. 30

15 AS-MONOcomp technical specifications .. 31
15.1 Sizes, options and type markings ... 31
15.2 Scope of the supply ... 31
15.3 Technical data .. 31
15.3.1 K design parameters ... 31
15.3.2 Guaranteed discharge parameters .. 31
15.3.3 Dimensions and weights ... 32
15.3.4 Setting the tank into the ground – procedure 32
15.3.5 Blower .. 33
15.3.6 Aerators .. 33
15.4 Possible WWTP layouts ... 33

15.5 Necessary construction and installation works (not included in the supply) ... 34
15.5.1 General scope of construction and installation works 34
15.5.2 Power supply in case the control unit is placed in a building structure ... 34
15.5.3 Power supply in case the pillar is used ... 34
15.5.4 Interconnection between the blower and the control unit 34
15.5.5 Interconnection between the tank and the control unit.................... 34
16 AS-MONOcomp technical specifications ... 35
 16.1 Sizes, options and type markings ... 35
 16.2 Scope of the supply ... 35
 16.3.1 Guaranteed discharge parameters .. 35
 16.3.2 Dimensions and weights K/PB .. 35
 16.3.3 Dimensions and weights K/PB-SV .. 36
 16.3.4 Setting the tank into the ground – procedure 36
 16.3.5 Other technical specifications ... 36
17 Optional accessories ... 37
 17.1 Additional phosphorus precipitation device 37
 17.2 UV lamp .. 37
18 Declaration of Conformity (CE) .. 38
1 Introduction

This documentation provides information and supporting documents for the design and/or installation of wastewater treatment plants (further as the WWTP) of the AS-MONOcomp type range. These documents are intended in, particular, for the persons:

- conducting the product (equipment) design,
- transporting the product (equipment), and
- carrying out the product (equipment) installation and builder’s works in connection.

In all cases, it is logically assumed that such persons are professionally competent for the above-specified activities.

The documentation contains important instructions, information, and safety warnings.

You are kindly requested to read this documentation thoroughly before you start with the design, installation, and any handling with the product (equipment). In case of any doubts, please do not hesitate to contact ASIO NEW, spol. s r.o.

Very important instructions and notices are herein indicated graphically as follows:

- **Any non-compliance with the instructions marked by this symbol may be hazardous to human health or property**
- **Forbidden activities**
- **Any non-compliance with these instructions may result in damaged product (equipment)**
- **Other important instructions**
2 Product description

2.1 General

The WWTP AS-MONOcomp type range described in this manual involves WWTPs up to 50 PE (population equivalent) units meeting the requirements of the Czech Standard ČSN EN 12566-3 “Small wastewater treatment systems for up to 50 PE - Part 3: Packaged and/or site assembled domestic wastewater treatment plants” (current version). This is a biological treatment plant using the SBR treatment process. The integrated treatment process takes place in a single packaged unit (tank) comprising all the treatment processes. In case of larger sizes, the unit may be (optionally) extended with a tank for excessive sludge.

2.2 WWTP sizes and options

The type range of AS-MONOComp is manufactured in individual sizes that differ one from another by their nominal daily flow rates and nominal daily organic loads, which equals to the number of people in connected facilities (i.e. PE = population equivalent); the individual options differ.

- Installation method and builder’s work in connection
- Additional accessories

Concrete WWTP designs in terms of sizes and options are specified according to the type marking.

2.3 Type marking diagrams

AS-MONOcomp /

Marking specifying the site expressed as a reference value connected inhabitants

Marking specifying additional accessories of WWTP
- no marking – basic version without additional accessories
- P – with a dosing device for phosphorus precipitation
- H – with equipment for discharged water sanitization

Marking specifying the tank design and material
- no marking – self-supporting all-plastic tank,
- PB – so-called plastic-concrete tank, where the tank is formed by a double-jacket plastic structure with steel reinforcement and the internal space is cast with concrete

Marking specifying the WWTP additional functions as regards for installations under the groundwater level
- no marking – basic option, not designed for such installations
- SV – tanks designed for installations under groundwater level

NOTE: ... - basic marking (always used), -... additional markings used as necessary/applicable

Marking examples:

AS-MONOcomp 4 K - type plant intended roughly for max. 5 connected inhabitants, with a polyethylene plastic cylindrical self-supporting tank.

AS-MONOcomp 12 P/PB-SV - type plant intended roughly for max. 12 connected inhabitants, with a plastic-concrete cylindrical tank, suitable for installations, where the groundwater level is above the foundation slab level. The plant is equipped with the additional, phosphorus removal equipment.
3 How the WWTP works

3.1 General

AS-MONOcomp is an activation aerobic wastewater treatment plant working on the SBR principle (further as the WWTP). Wastewater impurities are removed by mechanical-biological processes in the so-called SBR reactor. In this process, a simple tank and time-controlled purification cycle running during the day are employed.

3.2 Plant description

3.2.1 Plant layout

3.2.2 Construction

All the equipment parts are manufactured from materials suitable for the WWTP purposes – the airlift pumps and diffusers are suitable for their direct placement inside the tank, while the blower and the instrument panel are placed outside the tank area at a protected place (e.g. a garage, cellar or an outdoor electrical panelboard).
3.3 Description of plant functions

3.3.1 Purification process

The plant purification process includes the following phases:

(1) *Aeration phase* – during this phase aerobic purification processes take place. Floating microorganisms flocked to flocculi are removing organic impurities by aerobic degradation and convert them into biomass. In some purification phases, the aeration phase is adapted for the possibility of denitrification, where the active aeration takes turns with pauses.

(2) *Sedimentation* – in this purification phase, the aeration is completely interrupted and flocculi in the tank are allowed to sediment. A clear interface is thus created between activated sludge and cleaned water.

(3) *Cleaned water withdrawal* - in the time of separation of clean water from sludge, the airlift pump pumps it to the discharge.

3.3.2 Other processes

Wastewater inlet

Wastewater is continuously brought into the WWTP tank inlet section, which is separated from the plant remaining sections by a partition. At the inlet, coarse impurities are entrapped in the inlet basket, which is a form of wastewater pre-treating. In order to provide for decomposition of the entrapped impurities, wastewater in the tank is pumped within certain periods by the airlift pump to the inlet basket. By this, the coarse impurities are pulverised and easier degradable.

Excessive sludge withdrawal

Once the clean water withdrawal is completed, according to the pre-set programme, the excessive sludge withdrawal follows; the sludge is pumped away either into the filtration section or to a separated sludge tank. Sludge water is returned to the purification process. In some cases, the sludge tank may form a part of the wastewater treatment unit. Alternatively, it is possible to withdraw the sludge externally; this applies to cases, when the activated sludge volume exceeds the volume of 700 ml (after the thirty-minute sedimentation test). If so, 1/3 or 2/3 of the sludge tank volume is withdrawn by a sludge removal truck.

Sampling

As the airlift discharge is accessible to this purpose, sampling can be done directly in the plant. In cases, where it is required (e.g. for sampling of simple samples), the AS-REVO inspection shaft can be set downstream the unit for checking and sampling (see the separate documentation of the product).

3.3.3 Phosphorus precipitation option

This applies only to the P-marked plants, with additional equipment of phosphorus precipitation. In order to increase the plant efficiency in the sphere of phosphorus removal (i.e. reduction in the P_{total} indicator) from wastewater pump dosing a precipitating agent into the plant activation section is used. The precipitating agent is stored in a solution storage tank (a jerry can); this tank should be placed at a safe place directly close to the plant.
3.3.4 Sanitisation option

This applies only to the H-marked plants. Such plants are fitted with additional equipment for sanitisation on their discharge, i.e. by UV lamps fitted at the discharge stream.

4 WWTP tank options

4.1 Tank basic option

4.1.1 General

It concerns a compact cylindrical tank made of polypropylene boards, fitted with a ceiling structure and a manhole shaft (chimney). This plant option has no specific marking.

4.1.2 Tank covering – basic option

The tank is partially covered with the ceiling including the manhole shaft (chimney, which is fitted with a removable plastic cover. The cover diameter is 950 mm, which allows loading the cover with uniform weight of max. 200 kg (e.g. disguised structure) or with a single load of max. 100 kg (e.g. a person standing by chance on the cover, or a decorative flower box, etc.).

4.1.3 Tank placement in the ground

General

The tank structure is designed so that the tank can withstand (without any further builder’s work or structural measures) the earth load after backfilling. The tank is structurally dimensioned for placements into green areas (belts) and loading by backfill earth of the following parameters:

- Specific gravity of 1,900 kg/m³ (oval-shaped aggregate is recommended, fraction: 1 ÷ 8 mm)
- Angle of internal friction: 35°

The tank must be placed to the reinforced-concrete foundation slab of the planarity of ± 5 mm. The tank bottom may be positioned at the max. H_f depth – see the Technical Specifications). The ceiling over the tank can be loaded with the maximum layer of 500 mm of backfilling earth.

Additional loads

If additional loading is expected in the place of installation (e.g. loading by other backfill type, pressure of passing vehicle wheels, building foundations, stockpile, etc.), or if the tank bottom is placed deeper than H_f depth (i.e. the plant is installed with an extending adapter and the layer of backfilling earth is > 500 mm), it will be necessary to provide for additional structural reinforcement of the tank, including the adapter (e.g. by concrete pouring, improvements of the earth quality, etc.).

The additional structural support must be carried out according to a design prepared by professionally competent person.
Vehicular traffic over the tank

Any vehicular traffic and loading of the plant by motor road vehicles, within the distance equalling to the plant setting depth in the ground, is forbidden for this type of plant. If such distance is not observed the plant may be damaged.

With regard to potential loading of the cover and the plant neighbourhood by vehicle wheels, no vehicular traffic over the tank (and its neighbourhood) is not allowed.

Groundwater occurrence

If the underground water level is above the level of the foundation slab, it will not be possible to use this tank type.

Plant setting – drawings

![Diagram of plant setting](image)

- **Basic setting of the tank into the ground**
- **Potential setting of the tank into the ground with additional load**

4.2 PB, PB-SV tank design

4.2.1 General

This is a double-jacket framework made of polypropylene serving as sacrifice formwork. From the manufacturer’s place, the framework is fitted with fixed reinforcement bars so that it is fully prepared for concrete pouring. On the site, the internal jacket space is poured with concrete and the plastic framework ideally protects the concrete against any effects from both tank sides and provides for perfect water tightness of the tank. The concrete ceiling must be fitted with a damp proof course to prevent earth moisture penetration and/or surface/groundwater inside the internal jacket space.
4.2.2 Closing the tank with the cover

The tank framework is prepared for concreting of the ceiling slab with its manhole, on which standard pre-fab elements of the manhole shaft can be set and the shaft can be consequentially closed by a cover corresponding to ČSN EN 124 (Harmonised Czech standard for gully tops and manhole tops for vehicular and pedestrian areas). The cover centre can be loaded with an accidental load from vehicles up to 50 kN.

In this design version, the plant tank has no manhole shaft or any opening/removable cover.

4.2.3 Setting the tank into the ground

General

The tank structure is designed so that the tank can withstand (without any further builder’s work or structural measures) the earth load after backfilling. The tank is structurally dimensioned for placements into green areas (belts) and loading by backfill earth of the following parameters:

- Specific gravity of 2,000 kg/m³
- Earth pressure coefficient (at rest) \(K_r = 0.5 \)

The tank must be placed to the reinforced-concrete foundation slab of the planarity of ± 5 mm. The tank bottom may be positioned at the max. \(H_z \) depth – see the Technical Specifications). The ceiling over the tank is structurally dimensioned for additional loading with the service rod and vehicle traffic.

For concreting, C 35/45 class concrete is to be used according to ČSN EN 206-1, B500A reinforcing rods dia 12, are used in the internal jacket space according to ČSN EN 10027-1 plus welded wire mesh KZ 05 (dia 8/8-150/150).

Additional loads

If additional loading is expected in the place of installation (e.g. loading by other backfill type, pressure of passing vehicle wheels, building foundations, stockpile, etc.), or if the tank bottom is placed deeper than \(H_z \) depth (i.e. the plant is installed with an extending adapter and the layer of backfilling earth is > 500 mm, it will be necessary to provide for additional structural reinforcement of the tank, including the adapter (e.g. by concrete pouring, improvements of the earth quality, etc.).

The additional structural support must be carried out according to a design prepared by professionally competent person.

Measure for further structural reinforcements must be made at the manufacturer’s place.

Vehicular traffic over the tank

Vehicular traffic in the site of installation (i.e. loading the cover by vehicle wheels) is possible
Groundwater occurrence - PB

If the underground water level is above the level of the foundation slab, it will not be possible to use this tank type.

Groundwater occurrence – PB-SV

The tank can be used without any additional builder’s or structural measures.

Setting the tank to the ground – drawing

Setting of the tank into the ground

Ceiling damp-proof-course
5 Process equipment and electrical installations

5.1 Process equipment

5.1.1 General

The process equipment and machinery of the plant always consist of:

- control unit,
- blower and blower shaft,
- airlift pumps, and
- aeration element(s)

Depending on the WWTP type (option), the additional process equipment of the plant may also include:

- external box (pillar) containing the blower and the control unit,
- precipitant dosing device, and
- UV lamp

5.1.2 Blower

The blower is the source of pressurized air. It is chosen with regard to the plant nominal size and it is alternatively placed into:

- a plastic container nearby or
- an independent building structure nearby the plant tank (within the max. distance of 12 m).

The blower is connected with the WWTP control unit with a plastic pipe. Concrete specifications of blowers are shown in the relevant technical specifications.

5.1.3 Airlift pump(s)

The pumps are used for pumping of wastewater among individual sections of the plant. They are made of plastic materials. Pressure air brought from the airlift pump is used to drive them. Their operations are controlled by the control unit.

5.1.4 Aerators

Fine-bubble aeration elements provide for the aeration of the activation section in the basic option of WWTP. The aerators are designed to be laid freely on the tank bottom. This design enables easy removal (if necessary for repairs), without the necessity to empty the tank. A pressure air supply & distribution system is a part of the plant.

5.1.5 Precipitant dosing device

The precipitant dosing device is used with the “P” option. It is an automatic device usually placed, together with its reservoir of additives, close to control unit. For a detailed description of this device, see the independent documentation supplied with the device.

5.1.6 UV lamp

The UV lamp serves for sanitisation of cleaned water (option H) and it is installed at the discharge. For a detailed description of this device, see the independent documentation supplied with the device.
5.2 Electrical installations

5.2.1 General

The plant electrical installations include:

- control unit BonBloc Compact,
- blower,
- precipitant dosing device (optional), and
- UV lamp (optional)

5.2.2 Power supply to the plant

If the control unit is placed within the building, then it is connected directly to the mains socket outlet by its plug connector. If the control unit is situated outdoor, in the external box (pillar), then it will be necessary to provide for power supply by a suitable cable connected to the socket outlet forming part of the pillar. For detailed specifications of the power supply requirements, see the Technical Specifications.

For detailed specifications of electrical interconnections among individual plant parts, see the Technical Specifications.

6 Wastewater brought to the plant

Wastewater is brought from the building, for which the treatment plant is intended within the project design. The plant construction and its technical parameters are dimensioned for the treatment of wastewater corresponding, by its composition and concentration of substances, to the Czech Standard ČSN 75 6402 (Sewage treatment plants up to 500 of population equivalents).

Any changes in the plant utilisation must be consulted with the processing authority of the original design, authorised service centre, or directly with ASIO NEW spol. s r.o.

It is forbidden to discharge into the house sewerage plumbing of the building, to which the plant is connected, any substances deteriorating or even excluding the life and reproduction of microorganisms, on which the biological plant functions are based.

It is therefore strictly discharge namely the following substances:

- pharmaceuticals, poisons and toxic substances,
- paints, diluents and insecticides,
- undiluted acids and alkalis,
- condensates from condensation boilers, and
- other chemicals, such as photographic developers, stabilisers, etc.
During the wastewater treatment in the plant, practically the same process takes place as that under the natural conditions (i.e. the self-cleaning process). It therefore makes sense that the plant is “vulnerable” to an inadequate and inconsiderate behaviour, particularly because of using and discharging chemical preparations.

The following substances are highly unsuitable in wastewater brought to the plant!

<table>
<thead>
<tr>
<th>Liquid or solid substances</th>
<th>Why they are excluded</th>
<th>Where they should be disposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash</td>
<td>Not degradable</td>
<td>Dustbins, trash containers</td>
</tr>
<tr>
<td>Tampons, hygienic pads</td>
<td>Plant equipment is clogged</td>
<td>Dustbins, trash containers</td>
</tr>
<tr>
<td>Chemicals</td>
<td>Poison the wastewater</td>
<td>Approved waste depots</td>
</tr>
<tr>
<td>Disinfectants</td>
<td>Bacteria liquidation</td>
<td>Do not use!</td>
</tr>
<tr>
<td>Paints, varnishes</td>
<td>Poison the wastewater</td>
<td>Approved waste depots</td>
</tr>
<tr>
<td>Wet towels</td>
<td>Plant equipment is clogged</td>
<td>Dustbins, trash containers</td>
</tr>
<tr>
<td>Cleaning towels</td>
<td>Plant equipment is clogged</td>
<td>Dustbins, trash containers</td>
</tr>
<tr>
<td>Photographic chemicals</td>
<td>Poison the wastewater</td>
<td>Approved waste depots</td>
</tr>
<tr>
<td>Frying fats</td>
<td>Create deposits</td>
<td>Dustbins, trash containers</td>
</tr>
<tr>
<td>Sour milk, cream</td>
<td>Create deposits in the reactor and disturb the biochemical process</td>
<td>Dustbins, trash containers</td>
</tr>
<tr>
<td>Gypsum and similar materials</td>
<td>Plant equipment is clogged</td>
<td>Dustbins, trash containers</td>
</tr>
<tr>
<td>Cat toilet materials</td>
<td>Plant equipment is clogged</td>
<td>Dustbins, trash containers</td>
</tr>
<tr>
<td>Cigarette stubs</td>
<td>Create coatings in the tank</td>
<td>Dustbins, trash containers</td>
</tr>
<tr>
<td>Contraceptives</td>
<td>Plant equipment is clogged</td>
<td>Dustbins, trash containers</td>
</tr>
<tr>
<td>Cork products (stoppers, etc.)</td>
<td>Create coatings in the tank</td>
<td>Dustbins, trash containers</td>
</tr>
<tr>
<td>Varnishes</td>
<td>Poison the wastewater</td>
<td>Approved waste depots</td>
</tr>
<tr>
<td>Pharmaceuticals and similar preparations</td>
<td>Poison the wastewater</td>
<td>Approved waste depots</td>
</tr>
<tr>
<td>Engine oils</td>
<td>Poison the wastewater</td>
<td>Approved waste depots</td>
</tr>
<tr>
<td>Oil contaminated waste</td>
<td>Poison the wastewater</td>
<td>Approved waste depots</td>
</tr>
<tr>
<td>Earplugs</td>
<td>Plant equipment is clogged</td>
<td>Dustbins, trash containers</td>
</tr>
<tr>
<td>Pesticides</td>
<td>Poison the wastewater</td>
<td>Approved waste depots</td>
</tr>
<tr>
<td>Brush cleaning diluents</td>
<td>Poison the wastewater</td>
<td>Approved waste depots</td>
</tr>
<tr>
<td>Cleaning preparations in general</td>
<td>Poison the wastewater</td>
<td>Approved waste depots</td>
</tr>
<tr>
<td>Razor blades</td>
<td>Plant equipment is clogged, danger of injury</td>
<td>Dustbins, trash containers</td>
</tr>
<tr>
<td>Preparations for cleaning waste pipes and drains</td>
<td>Poison the wastewater</td>
<td>Do not use!</td>
</tr>
<tr>
<td>Insecticides</td>
<td>Poison the wastewater</td>
<td>Approved waste depots</td>
</tr>
<tr>
<td>Kitchen oils and similar</td>
<td>Plant equipment is clogged</td>
<td>Dustbins, trash containers</td>
</tr>
<tr>
<td>Leftovers – do not use kitchen rubbish crushers</td>
<td>Plant equipment is clogged</td>
<td>Dustbins, trash containers</td>
</tr>
<tr>
<td>Wallpaper glues</td>
<td>Plant equipment is clogged</td>
<td>Approved waste depots</td>
</tr>
<tr>
<td>Textiles, e.g. pantyhose, various rags and handkerchiefs</td>
<td>Plant equipment is clogged</td>
<td>Approved waste depots for used textile</td>
</tr>
<tr>
<td>Diluents</td>
<td>Poison the wastewater</td>
<td>Approved waste depots</td>
</tr>
</tbody>
</table>
BEWARE of disinfectants!
Disinfectants of sanitary hygiene must be used cautiously. They liquidate not only viruses and microbes, but also microorganisms providing for cleaning effects in the plant.

BEWARE of inadequately frequent laundry washing!
The quality of the plant cleaning process is negatively influenced with excessive concentrations of detergents and tensides in surge laundry washing (i.e. several laundry machines operating within a short time interval).

BEWARE of oils and fats!
Apart from chemical agents, they are in large quantities also dangerous to correct operations of the plant. By their decomposition, they make wastewater strongly acidic, which results in an adverse environment for the plant biological conditions. In case of wastewater brought from kitchens, a grease trap must be installed upstream the plant.

BEWARE of swimming pool water!
Discharging of large quantities of swimming pool water (even clean) or accumulated rainwater through the plant will cause flushing the microorganisms out of the plant into the discharge, which stops the plant operation. In case of swimming pool water, also the relevant chemicals in it have negative effects (i.e. chlorinated and stabilising preparations).

BEWARE of kitchen waste disposers!
Waste disposer connected to the kitchen discharge load inadequately the plant by large quantities of insoluble substances as well as large water volumes.

BEWARE of kitchen water treatment units!
Some water treatment units may (in the regeneration phase) discharge larger quantities of contaminated water that may by its composition and hydraulic conditions serious disturb the plant functionality.

The wastewater treatment plants are dimensioned to certain daily volumes of wastewater. If such volumes are exceeded, or the daily inlet concentration takes place in a short period of time, the plant functions may be disabled partially or fully.

It is forbidden:
- to discharge large volumes of wastewater exceeding the design parameters of the plant,
- surge discharging of wastewater exceeding 20% of the total daily inlet during one hour*

* If this cannot be avoided (e.g. plant utilisations for other purposes than in family houses (i.e. surge discharges in some facilities, it will be necessary to consider such conditions in the designing phase and, as appropriate, divide the wastewater streams or place an accumulation tank upstream and provide for a uniform inlet to the wastewater treatment plant.
7 General design instructions

7.1 General

A correctly designed project is an essential prerequisite for successful plant operations. In the design process, we advise to proceed in the following way:

- Select an adequate type of WWTP
- Choose the total WWTP layout
- Consider the details concerning the connection of inlet/discharge pipes
- Consider the details concerning the WWTP ventilation
- Consider the details concerning the WWTP setting and interconnecting of other WWTP sections

7.2 Selecting the WWTP type

7.2.1 General

In the selection process, we advise to proceed in the following way:

- Select an adequate size of WWTP
- Select an adequate option of WWTP in terms of discharge parameters
- Select an adequate design of tank and its setting into the ground

7.2.2 Determination of the PE number and nominal loading

For the number of connected PE units, it is possible to use the coefficients resulting out of ON 1085, ATV A 129; they are shown in the table below:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Unit</th>
<th>Conversion coefficient to PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family house *</td>
<td>person</td>
<td>1</td>
</tr>
<tr>
<td>Lodging house / simple boarding school</td>
<td>bed</td>
<td>1</td>
</tr>
<tr>
<td>Lodging house, medium standard (e.g. with laundry)</td>
<td>bed</td>
<td>2</td>
</tr>
<tr>
<td>Camping</td>
<td>visitor</td>
<td>0.5</td>
</tr>
<tr>
<td>Pub, no food served</td>
<td>seat place at table</td>
<td>0.33</td>
</tr>
<tr>
<td>Pub only cold food served</td>
<td>seat place at table</td>
<td>0.5</td>
</tr>
<tr>
<td>Pub with a triple use of the seat place at the table</td>
<td>seat place at table</td>
<td>1</td>
</tr>
<tr>
<td>Pub terrace</td>
<td>seat place at table</td>
<td>0.1</td>
</tr>
<tr>
<td>Theatre, cinema</td>
<td>seat place</td>
<td>0.066</td>
</tr>
<tr>
<td>Sports facilities - visitors</td>
<td>visitor</td>
<td>0.02</td>
</tr>
<tr>
<td>Sports facilities - sportsmen</td>
<td>sportsman</td>
<td>0.2</td>
</tr>
<tr>
<td>Outdoor bath, swimming pool</td>
<td>visitor</td>
<td>0.2</td>
</tr>
<tr>
<td>School</td>
<td>pupil</td>
<td>0.33</td>
</tr>
<tr>
<td>Kindergarten</td>
<td>pupil</td>
<td>0.2</td>
</tr>
<tr>
<td>Business company – manufacturing employees</td>
<td>employee</td>
<td>0.5</td>
</tr>
<tr>
<td>Business company – offices</td>
<td>employee</td>
<td>0.3</td>
</tr>
<tr>
<td>Camping (standing for caravan = 70m²)</td>
<td>standing</td>
<td>1</td>
</tr>
<tr>
<td>Harbour</td>
<td>anchor place</td>
<td>2</td>
</tr>
</tbody>
</table>

* A house with dwelling areas up to 40 m² corresponds to two persons, above 40 m² it corresponds at least to four persons

In these calculations, we recommend considering in addition:

- BOD₅ loading of 60 g/PE/day
- Hydraulic loading: 150 litres /PE/day

\[
\text{Number of connected PE units} = \text{number of units} \times \text{conversion coefficient to PE}
\]

BOD\textsubscript{5} loading (with substances) = 60 g per PE per day

Hydraulic loading = 150 litres per PE per day

In justified cases, make the calculation of loading with substances in another way.

The design size of the plant must correspond to the design parameters of hydraulic loading (= max. assumed flow rate) and BOD\textsubscript{5} loading (= max. assumed incoming pollution).

Selection of the nominal size according to the PE units

If the calculation is carried out in the standard way, select the suitable WWTP size according to the number of connected PE units according to the below table:

<table>
<thead>
<tr>
<th>WWTP size</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. number of PE</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Max. number of PE</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>18</td>
<td>23</td>
<td>34</td>
<td>44</td>
<td>55</td>
</tr>
</tbody>
</table>

If the assumed number of PE units is nearing to the minimum or maximum values, consider a possibility of using the neighbouring nominal size, e.g. regards to a facility enhancement in the future. If in doubts, consult the selection with ASIO NEW, spol. s r.o.

If the calculation is carried out in a non-standard standard way for other loading with pollutants or hydraulic loading or if you know the actual wastewater parameters, select a suitable nominal size of WWTP according to those loading parameters so that not a single value in the selected size is exceeded.

<table>
<thead>
<tr>
<th>WWTP size</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal flow rate (m3/day)</td>
<td>0.6</td>
<td>1.20</td>
<td>1.8</td>
<td>2.4</td>
<td>3</td>
<td>4.5</td>
<td>6</td>
<td>7.5</td>
</tr>
<tr>
<td>Nominal loading (kg BOD\textsubscript{5}/day)</td>
<td>0.24</td>
<td>0.48</td>
<td>0.72</td>
<td>0.96</td>
<td>1.20</td>
<td>1.8</td>
<td>2.4</td>
<td>3</td>
</tr>
</tbody>
</table>

In this case, we recommend consulting the selection of nominal sizes with ASIO NEW, spol. s r.o.

7.2.3 Selection in terms of the discharge parameters

In case of standard requirements for the cleaned water quality, it is possible to select the basic option, or if required, the Option “P” for the phosphorus content reduction. The guaranteed water quality values are showed in the table below.
Guaranteed concentration values in the cleaned water at the discharge*

<table>
<thead>
<tr>
<th>OPTION</th>
<th>BOD₅ (mg/l) (p/m)</th>
<th>COD (mg/l) (p/m)</th>
<th>Insolubles (mg/l) (p/m)</th>
<th>N⁻NH₄⁺ (mg/l) (p/m)</th>
<th>N_total (mg/l) (p/m)</th>
<th>P_total (mg/l) (p/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic AS-MONOcomp …</td>
<td>20 / 30</td>
<td>90 / 130</td>
<td>20 / 30</td>
<td>10 / 20</td>
<td>18 / 20</td>
<td>6 / 8</td>
</tr>
<tr>
<td>AS-MONOcomp “P”… with the dosing device</td>
<td>20 / 30</td>
<td>90 / 130</td>
<td>20 / 30</td>
<td>10 / 20</td>
<td>18 / 20</td>
<td>1 / 2</td>
</tr>
</tbody>
</table>

* Values are according to NV 401/2015 Coll., p = permissible values, m = maximum values. The "P" values are decisive if evaluated according to NV 57/2016 Coll.

7.2.4 Tank design

The tank design must be selected with regard to the tank expected setting into the ground, in terms of:

- setting the tank bottom depth,
- loading of the ground in the tank placement area, and
- occurrence of underground water.

A detailed description of settings of individual tank options is shown in the Chapter WWTP Tank Options. A brief overview of setting possibilities is shown in the table below.

A brief list of individual setting options:

<table>
<thead>
<tr>
<th>Tank design</th>
<th>Basic</th>
<th>/PB</th>
<th>/PB-SV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting to a green area</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Setting to premises with additional loading</td>
<td>s</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Setting to depths higher than the maximum depth (Hz)</td>
<td>s</td>
<td>YES*</td>
<td>YES*</td>
</tr>
<tr>
<td>Setting to areas with vehicular traffic</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Setting to areas with the underground water level above the foundation slab level</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

s... additional builder’s work in connection will be necessary (e.g. concrete encasement, etc.),

*... under the conditions stipulated in Chapter WWTP Tank Options.

7.3 Layout of the plant

The WWTP overall selection will include the placements of tank, blower, and distributors, as applicable. Potential options are described in Chapter Technical Specifications.

7.4 Connecting inlet and discharge pipes

As a standard, the inlet and discharge pipes are made of polypropylene pipes compatible with sewer socket pipes made of polyvinyl chloride (PVC) with rubber rings. If other sewer pipes are used (e.g. earthenware), then the transition must be made by the use of a relevant PVC pipe adapter.

7.5 Ventilation of the plant

The ventilation must be carried out through the inlet pipe in accordance with the Czech Standard ČSN EN 12 056 and led out above the top floor level.
Please note that neither aeration valve placed on the vertical sewer branch (riser) nor suction hose can satisfactorily provide for the plant ventilation!

7.6 Electrical design documentation

During the project design works, it will be necessary to consider:

- power supply cable to the control unit, and
- interconnections of plant individual sections with cables.

Detailed information for the project design is described in Chapter Technical Specifications.

8 General installation instructions

8.1 Professional qualifications

The plant installation works may be carried only by professionally competent persons duly qualified for:

- construction (building) works, and
- electrical installations.

8.2 Installation supporting documents

The installation must be conducted in accordance with the below-given instructions. The building part of the project must correspond to a project prepared by a duly competent person.

If any of installation procedures seems unclear to you or if you think that you do not have the necessary skills or means, then do not do the installation and turn to ASIO NEW, spol. s r.o. or its authorised representative.
8.3 Scope of the plant supply

Depending on the size and option, the WWTP supply involves:

- WWTP full-rigged tank (always),
- blower (always),
- control unit (always),
- plastic containers for blowers - pillar (as necessary),
- phosphorus precipitation device (as necessary), and
- UV lamp (as necessary).

Before the commencement of the installation, please check for the delivery completeness according to the bill of delivery. If the supply is not complete, then turn to ASIO NEW, spol. s r.o. or its authorised representative.

8.4 Installation steps in general

In the installation, the below specified steps should be followed:

- construct the foundation slab,
- carry out necessary excavations for connections among individual WWTP sections,
- in case of underground water occurrence, lower its level under the foundation slab level,
- place the tank on the foundation slab,
- connect the inlet and discharge pipes into the sewer system,
- install the blower container (as needed),
- install the blower in the building or to the container,
- carry out all the necessary interconnections among individual WWTP sections,
- carry out backfilling or concrete pouring of the tank
- lay all protective sleeves for cables among the electrical panel and WWTP electrical devices, including pull-through of cables,
- check the tank tightness and carry out final backfilling of excavated places with earth, and
- once the installation is completed, invite ASIO NEW, spol. s r.o. or its authorised representative for the plant commissioning procedure.

If you find, before the placement of the WWTP tank into the pit or during the installation, any damage in the tank, please turn to ASIO NEW, spol. s r.o. or its authorised representative immediately, because any repair of the tank must be made outside the pit.
Do not leave the installed and backfilled tank in the ground empty (i.e. without filling it with water)!
9 Foundation slab construction

9.1 General
The foundation slab construction includes:

- foundation pit excavation, and
- preparation of the foundation slab.

9.2 Foundation pit excavation
The pit plan area must overlap at every side the tank dimension by at least 600 mm (in all directions).

9.3 Preparation of the foundation slab
The slab thickness must correspond to the load bearing capacity of bearing ground. Resilient resistance against shifting w_p (in mm) in the centreline must be at least $C_{1z} = 10 \text{ MN/m}^3$. The foundation slab planarity must be ± 5 mm.

\begin{quote}
Once the foundation slab is completed, verify the slab planarity and record the measurement results!
\end{quote}
10 Setting of the WWTP tank

10.1 General

The tank setting consists of its placement to the foundation slab, concrete pouring around it and backfilling with earth. Possible methods and steps are different for individual tank designs.

Before you start the work, make sure that the intended method of setting is compliant with the relevant tank design.

Be careful to avoid any damage of connected pipes to the tank by backfilling and/or concreting procedures!

10.2 Tank – basic option

10.2.1 General

The tank setting can be carried out by:

- Backfilling with earth
- Additional concrete pouring (as needed).

10.2.2 Setting with backfilling

During the backfilling step, observe the following procedure:

- Proceed from the bottom by separate layers
- Each layer approx. 0.3m thick should be compacted before the next layer is laid
- Together with backfilling, step-by-step fill the tank so that the water level correspond to the backfilled earth layer

Make sure that the backfill earth does not contain any stones, builder’s debris, or any other particles that could mechanically damage the tank.

If not filled with water simultaneously, the tank may collapse.

10.2.3 Setting with additional concrete pouring

During the concrete pouring step, observe the following procedure:

- Proceed from the bottom by separate layers
- Each concrete layer approx. 0.3m thick should be compacted before the next layer is laid
- Together with concreting, step-by-step fill the tank so that the water level correspond to the backfilled earth layer

If not filled with water simultaneously, the tank may collapse.
10.3 Tank design /PB

10.3.1 General

The tank setting should be carried out by with:

- Standard concrete pouring into the internal jacket space
- Additional concrete pouring (as needed).

10.3.2 Standard concrete pouring into the internal jacket space

The following steps should be observed during the concrete pouring:

- Concrete should be poured by a hose (concrete pump) or a sleeve (gravity pouring of concrete mixture); the hose is to be inserted into the internal space of the frame walls so that in depths exceeding 1.5 m the concrete mixture is not separated
- After the tank bottom is poured with concrete, wait for concrete setting (SV option only)
- Fill the tank with water. The internal space layer is poured to the height of max. 0.5 m (uniformly around the whole tank frame)
- Continue with concreting the internal space of the frame always up to the layer thickness of max. 0.5 m. Before each concreting wait for concrete setting in the previous layer. Fill the tank with water, uniformly in all sections, up to the height of approx. 700 mm above the topmost concrete layer
- In this way, pour concrete in the internal jacket up to the ceiling.
- The last layer is laid on the ceiling. Again, this layer may be poured only after concrete setting in the internal jacket

| It will be always necessary to fill the tank with water up before concreting the next layer. |
| Always use the concrete class stipulated in the design documentation (standard: C35/45 class concrete according to ČSN EN 206, slump test S5 >200 mm according to ČSN EN 12350, density: 2,400 kg/m³). |

10.3.3 Setting with additional concrete pouring

The tank should be concreted as follows:

- Standard concrete pouring into the internal jacket space
- Additional concrete pouring of the tank as required by the design documentation.
11 Setting and connecting of other sections of the plant

11.1 General
Depending on setting and connections, the installation works involve:

- Installation of the control unit and the blower
- Installation of the dosing pump

11.2 Installation of the control unit and the blower

11.2.1 Placement in the building
Hang the control unit in a normal way on the wall and connect the blower by a hose.

11.2.2 Optional accessories – the pillar
Place the pillar into an excavated pit and backfill it. Hang the control unit on the pillar wall above the blower and connect the blower with the control unit.

While placing the blower, make sure that there is a sufficient air supply into the building (the air is withdrawn from the building into the WWTP tank).
The blower must be placed at the maximum distance of 12 meters from the WWTP tank.

11.3 Installation of the dosing pump

11.3.1 Placement in the building
Hang the dosing pump in a suitable way on the wall nearby the control unit. The jerry can (additive reservoir) with the dosed liquid should be placed within the pump range.

11.3.2 Optional accessories – the pillar
The dosing pump is a part of the supplied pillar. Place the pillar as described above.

If it is required by local/national regulations, the initial official inspection must be conducted for the whole WWTP placements and cabling before it commissioning.

11.4.1 Control unit installation
(1) Connect the blower with the control unit using a rigid hose – ¾” size.

(2) Interconnect the control unit outputs with individual components in the plant. In four cases, use a ¼” rigid hose. The hose leading to the plant must be laid in a protective sleeve (min. DN 90) preventing it against damage.

The routes and the hoses must be laid as linear as possible; no breaks are allowed, as it could result in their clogging.
11.4.2 Connecting the dosing pump

(1) Connect the dosing pump on the suction side with the jerry can (additive reservoir).

(2) Together with air hoses, pull the hose on the discharge side through the protective sleeve into the plant.

12 Commissioning of the plant

12.1 Putting into service by the technician

The commissioning of the plant is carried out by ASIO NEW, spol. s r.o. or its authorise representative. This includes:

- Correct installation inspection of the plant
- Adjustment and tuning of individual part of the plant
- Training of future personnel

The commissioning procedures and personnel training will be recorded in the “Handover and Installation Certificate”. At the commissioning, the plant is handed over to its owner/operator.

Before the commissioning procedure is completed, it is not allowed to operate the plant!

The commissioning must be documented in the Handover and Installation Certificate!

12.2 Technical documentation

Within the commissioning procedure, the user will receive the following technical documents:

- User Manual
- Brief Operating Instructions
- Test certificate for the plant water tightness
- Blower instruction manual

12.3 Commissioning conditions

For successful commissioning of the plant, the following conditions must be met:

- The plant must be correctly installed and set
- Power supply must be brought into the plant
- Qualified operator(s) must be present for training
- A person authorised for accepting the technical documentation must be present (if such person is different from the operators).
13 Handling, transport and storage

13.1 Handling

Handling of the tank can be carried out with the use of a forklift truck or a crane.

While handling the plastic tank, proceed with special care due to the reduced impact resistance of plastic materials.

At temperatures below 5 °C, any handling of the tanks is forbidden, because of danger of its damage due to embrittlement of plastic materials.

Before any handling, it will be necessary to check its general condition first, with a special attention paid to its fastening and tying elements. In addition, it will be necessary to make sure that inside the tank there are no foreign things or liquids (such as rainwater).

Rainwater must be pumped away from the tank before the handling!

During the handling, observe the following principles.

- Select an adequate method of handling with regard to the tank height, shape and dimensions
- While laying or hanging the tank, follow the rules shown in the pictures below
- For hanging the tank, use only the fastening elements provided with the tank!

While handling the tank, all generally applicable codes, and standards concerning occupational and health safety must be followed.

13.2 Transport

The transport means must be chosen with regard to the tank height, shape, and dimensions.

The tank should be placed at its bottom and fixed against movements. Do not transport any foreign things inside the tank!

14.3 Storage

If the tank is to be stored before its installation, it will be necessary to place it on a flat and hard surface and provide for other conditions preventing any mechanical damage and/or falling of persons inside the tank.
If the tank is to be kept in storage for two months or more, make sure that it is protected (by a sun screen) against solar radiation. The plastic materials of the tank do not contain stabilisers protecting against UV radiation.

15 Attendance and maintenance

14.1 General

The plant is designed in a manner that does not require a permanent attendance. However, after its starting-up, it will be necessary to perform regular inspections as well as the below described activities (see the table).

<table>
<thead>
<tr>
<th>Activities necessary for correct operations of the plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity interval</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Daily</td>
</tr>
<tr>
<td>Weekly</td>
</tr>
<tr>
<td>Monthly</td>
</tr>
<tr>
<td>Biannually</td>
</tr>
<tr>
<td>Other interval</td>
</tr>
<tr>
<td>x</td>
</tr>
<tr>
<td>as needed</td>
</tr>
<tr>
<td>as needed</td>
</tr>
</tbody>
</table>

The overall time demand for the operators is approximately 16 hours a year. For detailed instructions for the attendance and maintenance, see the User Manual (handed over to the operator during the plant commissioning).

14.2 Operators’ qualifications

The attendance and maintenance of the plant may be performed by persons without any special qualifications. The future operators are trained within the WWTP commissioning procedures.
15 AS-MONOcomp technical specifications

15.1 Sizes, options and type markings

This plant is manufactured in several sizes and types differing by their construction materials used and tank design. The type marking is as follows:

AS-MONOcomp ...

Marking specifying the number of connected inhabitants (indicative only)

15.2 Scope of the supply

<table>
<thead>
<tr>
<th>WWTP with full rigged tank</th>
<th>YES</th>
<th>NO</th>
<th>as ordered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manhole cover</td>
<td>YES</td>
<td>NO</td>
<td>as ordered</td>
</tr>
<tr>
<td>Blower</td>
<td>YES</td>
<td>NO</td>
<td>as ordered</td>
</tr>
<tr>
<td>Control unit</td>
<td>YES</td>
<td>NO</td>
<td>as ordered</td>
</tr>
<tr>
<td>Phosphorus precipitation dosing device</td>
<td>YES</td>
<td>NO</td>
<td>as ordered</td>
</tr>
<tr>
<td>Sanitation</td>
<td>YES</td>
<td>NO</td>
<td>as ordered</td>
</tr>
</tbody>
</table>

15.3 Technical data

15.3.1 K design parameters

<table>
<thead>
<tr>
<th>WWTP size</th>
<th>PE number</th>
<th>Nominal daily flow rate (m³/day)</th>
<th>Nominal BOD loading (kg BOD₅/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2-5</td>
<td>0.6</td>
<td>0.24</td>
</tr>
<tr>
<td>8</td>
<td>5-9</td>
<td>1.2</td>
<td>0.48</td>
</tr>
<tr>
<td>12</td>
<td>6-13</td>
<td>1.8</td>
<td>0.72</td>
</tr>
<tr>
<td>16</td>
<td>8-18</td>
<td>2.4</td>
<td>0.96</td>
</tr>
<tr>
<td>20</td>
<td>10-23</td>
<td>3.00</td>
<td>1.20</td>
</tr>
<tr>
<td>30</td>
<td>15-34</td>
<td>4.5</td>
<td>1.8</td>
</tr>
<tr>
<td>40</td>
<td>20-44</td>
<td>6</td>
<td>2.4</td>
</tr>
<tr>
<td>50</td>
<td>25-55</td>
<td>7.5</td>
<td>3</td>
</tr>
</tbody>
</table>

15.3.2 Guaranteed discharge parameters

<table>
<thead>
<tr>
<th>OPTION</th>
<th>Guaranteed concentration values in the cleaned water at the discharge*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BOD₅ (mg/l)</td>
</tr>
<tr>
<td>Basic AS-MONOcomp ...</td>
<td>20 / 30</td>
</tr>
<tr>
<td>AS-MONOcomp "P" ... with the dosing device</td>
<td>20 / 30</td>
</tr>
</tbody>
</table>

* Values are according to NV 401/2015 Coll., p = permissible values, m = maximum values. The "P" values are decisive if evaluated according to NV 57/2016 Coll.
15.3.3 Dimensions and weights

<table>
<thead>
<tr>
<th>WWTP size</th>
<th>D (mm)</th>
<th>Hv (mm)</th>
<th>Ho (mm)</th>
<th>H1 (mm)</th>
<th>H2 (mm)*</th>
<th>Hcov (mm)</th>
<th>Hz (mm)</th>
<th>DN inlet/discharge</th>
<th>a (mm)</th>
<th>b (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1200</td>
<td>1300</td>
<td>1220</td>
<td>1520</td>
<td>500</td>
<td>2020</td>
<td>2020</td>
<td>150</td>
<td>1250</td>
<td>1250</td>
<td>180</td>
</tr>
<tr>
<td>8</td>
<td>1700</td>
<td>1300</td>
<td>1220</td>
<td>1520</td>
<td>500</td>
<td>2020</td>
<td>2020</td>
<td>150</td>
<td>1750</td>
<td>1750</td>
<td>340</td>
</tr>
<tr>
<td>12</td>
<td>2100</td>
<td>1300</td>
<td>1220</td>
<td>1520</td>
<td>500</td>
<td>2020</td>
<td>2020</td>
<td>150</td>
<td>2150</td>
<td>2150</td>
<td>450</td>
</tr>
<tr>
<td>16</td>
<td>1900</td>
<td>2100</td>
<td>2020</td>
<td>2320</td>
<td>500</td>
<td>2820</td>
<td>2820</td>
<td>150</td>
<td>1950</td>
<td>1950</td>
<td>680</td>
</tr>
<tr>
<td>20</td>
<td>2100</td>
<td>2100</td>
<td>2020</td>
<td>2320</td>
<td>500</td>
<td>2820</td>
<td>2820</td>
<td>150</td>
<td>2150</td>
<td>2150</td>
<td>750</td>
</tr>
<tr>
<td>30</td>
<td>2400</td>
<td>2100</td>
<td>2020</td>
<td>2320</td>
<td>500</td>
<td>2820</td>
<td>2820</td>
<td>150</td>
<td>2450</td>
<td>2450</td>
<td>830</td>
</tr>
<tr>
<td>40</td>
<td>2100</td>
<td>2730</td>
<td>2650</td>
<td>2970</td>
<td>500</td>
<td>3470</td>
<td>2820</td>
<td>150</td>
<td>2350</td>
<td>2350</td>
<td>900</td>
</tr>
<tr>
<td>50</td>
<td>2500</td>
<td>2730</td>
<td>2650</td>
<td>2970</td>
<td>500</td>
<td>3470</td>
<td>3470</td>
<td>150</td>
<td>2550</td>
<td>2550</td>
<td>950</td>
</tr>
</tbody>
</table>

H2 ... basic height with the chimney, without the adapter
Hz (mm) ... max. depth of foundation bottom – if exceeded, structural support will be necessary (e.g. by concreting).

15.3.4 Setting the tank into the ground – procedure

<table>
<thead>
<tr>
<th>Tank construction and design</th>
<th>Green belt*</th>
<th>Space with additional loading</th>
<th>Tank bottom is higher than max. depth Hz</th>
<th>Area with vehicles traffic</th>
<th>Ground water level above the foundation slab level</th>
</tr>
</thead>
<tbody>
<tr>
<td>"No marking"</td>
<td>YES</td>
<td>s</td>
<td>s</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

* ... Backfill density 1900 kg/m³, internal friction angle 35°, tank bottom depth: max. Hz
s ... Additional builder’s work in connection necessary (e.g. concreting)
15.3.5 Blower

<table>
<thead>
<tr>
<th>WWTP size</th>
<th>Type*</th>
<th>Absorbed power at 20 kPa</th>
<th>Noise emissions (dB)</th>
<th>Air quantity supplied (l/min)</th>
<th>Voltage system for connection</th>
<th>Placement class</th>
<th>Temperature range at the placement (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Airmac DBMX-100</td>
<td>48</td>
<td>100</td>
<td>TN-S 1+N+PE 230V/50Hz</td>
<td>AA 4, AB 4, AC 1, AD 4, AE 4, AF 2</td>
<td>5 - 40</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2x Airmac DBMX-100</td>
<td>2x48</td>
<td>2x100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Airmac DBMX-298</td>
<td>2x48</td>
<td>2x100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Airmac DBMX-298</td>
<td>2x48</td>
<td>2x100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2x Airmac DBMX-298</td>
<td>2x48</td>
<td>2x100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Airmac DBMX-460</td>
<td>52</td>
<td>244</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>LUTOS DT4R</td>
<td>400</td>
<td>66/79**</td>
<td>433</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>LUTOS DT4R</td>
<td>500</td>
<td>67/81**</td>
<td>516</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* … Individual types may be changed according to current offers from the suppliers.
** … Noise level with / without cover

15.3.6 Aerators

<table>
<thead>
<tr>
<th>WWTP size</th>
<th>Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Pipe-shaped fine-bubble element</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

15.4 Possible WWTP layouts

Building structure (garage, shed, etc.)

Power supply cable - plug

Interconnection between control unit and tank (protective sleeve DN 100)

Outdoor pillar with blower, hose and control unit

Power supply cable from the building structure

Interconnection between container and tank (protective sleeve DN 100)
15.5 Necessary construction and installation works (not included in the supply)

15.5.1 General scope of construction and installation works

- Setting of the tank into the ground: YES
- Sewer connections: YES
- Setting of the container into the ground: YES (if the pillar is used)
- Interconnection between blower and control unit: YES
- Interconnection between tank and control unit: YES (four hoses in the protective sleeve)
- Power supply to the plant: YES

15.5.2 Power supply in case the control unit is placed in a building structure

Independently protected receptacle: 230V/50Hz, TN-C-S 1+N+PE.

15.5.3 Power supply in case the pillar is used

Independently protected incoming cable CYKY 3x1.5; 230V/50Hz, TN-C-S 1+N+PE connected into a waterproof mains receptacle installed in a container.

15.5.4 Interconnection between the blower and the control unit

Reinforced hose for air distribution (dia: ¾”, internal dia: 19 mm).

15.5.5 Interconnection between the tank and the control unit

Four pieces of reinforced hose for air distribution (dia: ¾”, internal dia: 19 mm).
16 AS-MONOcomp technical specifications

16.1 Sizes, options and type markings

This plant is manufactured in several sizes and types differing by their construction materials used and tank design. The type marking is as follows:

Marking specifying the number of connected inhabitants (indicative only)

Marking specifying the tank design in terms of its adaptation for installations under the groundwater level; without marking: no adaptation, SV – the tank is adapted

16.2 Scope of the supply

WWTP with full rigged tank	YES	NO	as ordered
Blower	YES	NO	as ordered
Control unit	YES	NO	as ordered
Phosphorus precipitation dosing device	NO	YES	as ordered
Sanitation	NO	YES	as ordered
Shaft adapter with cover (concrete, pre-fab elements)	NO	YES	as ordered

16.3.1 Guaranteed discharge parameters

<table>
<thead>
<tr>
<th>OPTION</th>
<th>BOD₅ (mg/l) (p/m)</th>
<th>COD (mg/l) (p/m)</th>
<th>Insolubles (mg/l) (p/m)</th>
<th>N-NH₄⁺ (mg/l) (p/m)</th>
<th>Ntotal (mg/l) (p/m)</th>
<th>Ptotal (mg/l) (p/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic AS-MONOcomp ...</td>
<td>20 / 30</td>
<td>90 / 130</td>
<td>20 / 30</td>
<td>10 / 20</td>
<td>18 / 20</td>
<td>6 / 8</td>
</tr>
<tr>
<td>AS-MONOcomp "P"... with the dosing device</td>
<td>20 / 30</td>
<td>90 / 130</td>
<td>20 / 30</td>
<td>10 / 20</td>
<td>18 / 20</td>
<td>1 / 2</td>
</tr>
</tbody>
</table>

* Values are according to NV 401/2015 Coll., p = permissible values, m = maximum values. The "m" values are decisive if evaluated according to NV 57/2016 Coll.

16.3.2 Dimensions and weights K/PB

<table>
<thead>
<tr>
<th>WWTP size</th>
<th>D (mm)</th>
<th>Hv (mm)</th>
<th>Ho (mm)</th>
<th>H1 (mm)</th>
<th>H2 (mm)</th>
<th>DN inlet/discharge</th>
<th>Weight (kg)</th>
<th>Concrete volume in m³ (informative value only)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1520</td>
<td>1300</td>
<td>1220</td>
<td>1670</td>
<td>5000</td>
<td>150</td>
<td>345</td>
<td>1.11</td>
</tr>
<tr>
<td>8</td>
<td>2020</td>
<td>1300</td>
<td>1220</td>
<td>1670</td>
<td>5000</td>
<td>150</td>
<td>465</td>
<td>1.69</td>
</tr>
<tr>
<td>12</td>
<td>2420</td>
<td>1300</td>
<td>1220</td>
<td>1670</td>
<td>5000</td>
<td>150</td>
<td>585</td>
<td>2.18</td>
</tr>
<tr>
<td>16</td>
<td>2220</td>
<td>2100</td>
<td>2020</td>
<td>2470</td>
<td>5000</td>
<td>150</td>
<td>765</td>
<td>2.47</td>
</tr>
<tr>
<td>20</td>
<td>2420</td>
<td>2100</td>
<td>2020</td>
<td>2470</td>
<td>5000</td>
<td>150</td>
<td>1100</td>
<td>3.04</td>
</tr>
<tr>
<td>30</td>
<td>2720</td>
<td>2100</td>
<td>2020</td>
<td>2470</td>
<td>5000</td>
<td>150</td>
<td>1350</td>
<td>3.43</td>
</tr>
<tr>
<td>40</td>
<td>2620</td>
<td>2730</td>
<td>2650</td>
<td>3120</td>
<td>5000</td>
<td>150</td>
<td>1680</td>
<td>4.01</td>
</tr>
<tr>
<td>50</td>
<td>2820</td>
<td>2700</td>
<td>2650</td>
<td>3120</td>
<td>5000</td>
<td>150</td>
<td>1900</td>
<td>4.42</td>
</tr>
</tbody>
</table>

H₂ (mm) ...max. depth of the foundation pit

* Concrete is not a part of the supply
16.3.3 Dimensions and weights K/PB-SV

<table>
<thead>
<tr>
<th>WWTP size</th>
<th>D (mm)</th>
<th>Hv (mm)</th>
<th>Ho (mm)</th>
<th>H1 (mm)</th>
<th>H2 (mm)</th>
<th>DN inlet/discharge</th>
<th>Weight (kg)</th>
<th>Concrete volume in m³ (informative value only)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1520</td>
<td>1450</td>
<td>1370</td>
<td>1830</td>
<td>5000</td>
<td>150</td>
<td>385</td>
<td>1.38</td>
</tr>
<tr>
<td>8</td>
<td>2020</td>
<td>1450</td>
<td>1370</td>
<td>1830</td>
<td>5000</td>
<td>150</td>
<td>535</td>
<td>2.16</td>
</tr>
<tr>
<td>12</td>
<td>2420</td>
<td>1450</td>
<td>1370</td>
<td>1830</td>
<td>5000</td>
<td>150</td>
<td>760</td>
<td>2.86</td>
</tr>
<tr>
<td>16</td>
<td>2220</td>
<td>2250</td>
<td>2170</td>
<td>2630</td>
<td>5000</td>
<td>150</td>
<td>1000</td>
<td>3.27</td>
</tr>
<tr>
<td>20</td>
<td>2420</td>
<td>2250</td>
<td>2170</td>
<td>2630</td>
<td>5000</td>
<td>150</td>
<td>1400</td>
<td>3.72</td>
</tr>
<tr>
<td>30</td>
<td>2720</td>
<td>2250</td>
<td>2170</td>
<td>2630</td>
<td>5000</td>
<td>150</td>
<td>1840</td>
<td>4.29</td>
</tr>
<tr>
<td>40</td>
<td>2620</td>
<td>2900</td>
<td>2820</td>
<td>3280</td>
<td>5000</td>
<td>150</td>
<td>2250</td>
<td>4.8</td>
</tr>
<tr>
<td>50</td>
<td>2820</td>
<td>2900</td>
<td>2820</td>
<td>3280</td>
<td>5000</td>
<td>150</td>
<td>2650</td>
<td>5.34</td>
</tr>
</tbody>
</table>

H₁ (mm) ... max. depth of the foundation pit
* Concrete is not a part of the supply

16.3.4 Setting the tank into the ground – procedure

<table>
<thead>
<tr>
<th>Tank construction and design</th>
<th>Green belt*</th>
<th>Space with additional loading</th>
<th>Tank bottom is higher than max. depth Hz</th>
<th>Area with vehicles traffic</th>
<th>Ground water level above the foundation slab level</th>
</tr>
</thead>
<tbody>
<tr>
<td>K/PB</td>
<td>YES</td>
<td>YES</td>
<td>YES**</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>K/PB-SV</td>
<td>YES</td>
<td>YES</td>
<td>YES**</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

* ... Backfill density 1900 kg/m³, internal friction angle 35°, tank bottom depth: max. Hz
** ... Under the conditions stipulated in WWTP Options

16.3.5 Other technical specifications

For other technical specifications are identical with those shown in Chapter 15.
17 Optional accessories

17.1 Additional phosphorus precipitation device

<table>
<thead>
<tr>
<th>Type*</th>
<th>Absorbed power (kW)</th>
<th>Current (A)</th>
<th>Voltage (V)</th>
<th>Flow rate (litres per hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NKNSOO1HA110</td>
<td>0.015</td>
<td>0.6</td>
<td>230</td>
<td>1</td>
</tr>
</tbody>
</table>

*… Individual types may be changed according to current offers from the suppliers.

Recommended pump lift and discharge heights are up to five (5) metres.

Recommended consumption of chemicals: 1.35 litres per PE unit per month.

Precipitant used: Iron(III) sulphate Fe$_2$(SO$_4$)$_3$ (commercial name: Prefloc)

Connection by a transparent hose PE 6/8 mm.

17.2 UV lamp

For the sanitation purposes, UV lamp can be optionally installed at the discharge.

<table>
<thead>
<tr>
<th>Type*</th>
<th>Absorbed power (W)</th>
<th>Voltage (V)</th>
<th>Service life (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVC immersion lamp (60W)</td>
<td>60</td>
<td>230</td>
<td>max. 8000</td>
</tr>
</tbody>
</table>

*… Individual types may be changed according to current offers from the suppliers.
18 Declaration of Conformity (CE)

AS-MONOcomp – Standard version

CE

ASIO NEW, spol. s r.o.
Kšírova 552/45
619 00 Brno, CZ

EN 12566-3+A2
Small wastewater treatment systems for up to 50 PE

AS-MONOcomp
SBR-Process in a single tank with external sludge reservoir

Test performed by:
TUV SUD Czech s. r. o.
Notified Organisational Unit No. 1017
Novodvorská 994
140 00 Prague 4

Cleaning efficiency (at daily organic loading of BOD₅ = 0.24 kg per day)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Efficiency</th>
<th>Load (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD</td>
<td>96.1%</td>
<td>27.7</td>
</tr>
<tr>
<td>BOD₅</td>
<td>99.1%</td>
<td>2.7</td>
</tr>
<tr>
<td>Insolubles</td>
<td>98.1%</td>
<td>6.5</td>
</tr>
<tr>
<td>NH₄-N</td>
<td>93.2%</td>
<td>4.0</td>
</tr>
<tr>
<td>N_TOTAL</td>
<td>85.1%</td>
<td>11.6</td>
</tr>
<tr>
<td>P_TOTAL</td>
<td>71.3%</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Cleaning capacity
Nominal organic loading*
0.24 0.48 0.72 0.96 1.2 1.8 2.4 3 kg BOD₅ per day

Nominal flow rate
0.6 1.2 1.8 2.4 3 4.5 6 7.5 m³ per day
*According to the size (type): 4 8 12 16 20 30 40 50

Waterproofness (water testing) passed

Load-bearing capacity by testing backfilling 0.5 m
DRY

Durability passed

Reaction to fire Class E

Effects of hazardous substances NPD
AS-MONOcomp – Dosing equipment version

CE

ASIO NEW, spol. s r.o.
Kšírova 552/45
619 00 Brno, CZ

EN 12566-3+A2
Small wastewater treatment systems for up to 50 PE

AS-MONOcomp
SBR-Process in a single tank with external sludge reservoir and dosing equipment for phosphorus precipitation

Test performed by:
TUV SUD Czech s. r. o.
Notified Organisational Unit No. 1017
Novodvorská 994
140 00 Prague 4

Cleaning efficiency (at daily organic loading of \(\text{BOD}_5 = 0.24 \text{ kg per day} \))

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Efficiency</th>
<th>Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD</td>
<td>94.9%</td>
<td>36.2</td>
</tr>
<tr>
<td>(\text{BOD}_5)</td>
<td>98.2%</td>
<td>5.3</td>
</tr>
<tr>
<td>Insolubles</td>
<td>97.5%</td>
<td>8.8</td>
</tr>
<tr>
<td>(\text{NH}_3-N)</td>
<td>86.2%</td>
<td>8.1</td>
</tr>
<tr>
<td>(N_{\text{TOTAL}})</td>
<td>83.2%</td>
<td>13.1</td>
</tr>
<tr>
<td>(P_{\text{TOTAL}})</td>
<td>91.1%</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Cleaning capacity
Nominal organic loading*
0.24 0.48 0.72 0.96 1.2 1.8 2.4 3 kg \(\text{BOD}_5 \) per day

Nominal flow rate*
0.6 1.2 1.8 2.4 3 4.5 6 7.5 m\(^3\) per day

*According to the size (type): 4 8 12 16 20 30 40 50

Waterproofness (water testing) passed

Load-bearing capacity by testing backfilling 0.5 m

Durability passed

Reaction to fire Class E

Effects of hazardous substances NPD